何建樑,男,1993年7月生,工学博士。2019年毕业于3499cc拉斯维加斯计算机科学与技术专业,获理学硕士学位,导师毛文涛教授,2020年-2024年,在南京理工大学机械工程学院攻读博士学位,获工学博士学位,导师王禹林教授。研究方向包括:数据驱动的机械设备运行状态监测系统构建、机械设备切削加工故障诊断、云边协同大数据驱动的深度学习状态识别方法等,包括多源数据采集程序开发,振动信号分析处理,深度学习网络建模,工业大数据存储环境实现,运行状态监测软件系统构建等。主持江苏省研究生科研与实践创新计划项目1项,参与国家自然科学基金面上项目、国家科技重大专项“04专项”、国家重点研发计划“高性能制造技术与重大装备”重点专项等6余项,在Journal of Intelligent Manufacturing,Mechanical Systems and Signal Processing,IEEE Transactions on Instrumentation and Measurement等国际学术刊物及会议发表论文5余篇。近年来担任Journal of Intelligent Manufacturing,Engineering Applications of Artificial Intelligence等学术期刊论文评审。
发表论文:
[1]Jianliang He(何建樑), Yuxin Sun, Chen Yin, et al. Cross-domain adaptation network based on attention mechanism for tool wear prediction[J].Journal of Intelligent Manufacturing(中科院 1 区 TOP SCI, IF =8.3),2022:1-23.
[2]Jianliang He(何建樑), Yadong Xu, Yi Pan, Yulin Wang. Adaptive Weighted Generative Adversarial Network with Attention Mechanism: A Transfer Data Augmentation Method for Tool Wear Prediction[J]. Mechanical Systems and Signal Processing (Accepted) 2024 (中科院 1 区 SCI, IF =8.4).
[3]Jianliang He(何建樑), Chen Yin, Yan He, et al. Deep multi-task network based on sparse feature learning for tool wear prediction[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science(中科院4区 SCI, IF =2.0), 2022: 09544062221116224.
[4]Yuxin Sun, Jianliang He(何建樑), Haifeng Ma, et al. Online chatter detection considering beat effect based on Inception and LSTM neural networks[J]. Mechanical Systems and Signal Processing(中科院 1 区 SCI, IF =8.4), 2023, 184: 109723.
[5]Wentao Mao, Jianliang He(何建樑), Ming J. Zuo. Predicting remaining useful life of rolling
bearings based on deep feature representation and transfer learning[J]. IEEE Transactions on Instrumentation and Measurement(中科院 2 区 SCI, IF =5.6), 2019, 69(4): 1594-1608.
[6]Wentao Mao, Jianliang He(何建樑), Yuan Li, et al. Bearing fault diagnosis with auto-encoder extreme learning machine: A comparative study[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(8): 1560-1578.(SCI , 4区)
[7]Wentao Mao, Jianliang He(何建樑), Xizheng Cao, et al. Predicting Remaining Useful Life of Rolling Bearings based on Deep Feature Representation and LSTM Neural Network, Advances in Mechanical Engineering. (SCI , 3区)
科研项目:
[1]江苏省研究生科研与实践创新计划(KYCX23_0424)[主持] 2023.4–2024.5
基于云边协同的数控机床铣削刀具寿命预测方法研究
[2]国家重点研发计划(2021YFB2012104)[主要参与] 2022.12–2025.11
高端装备协同智能故障诊断理论与预测方法—高端装备退化评估与数模联动剩余寿命预测
[3]国家自然基金面上项目(52075267)[主要参与] 2021.1-2024.12
基于深度学习机床故障小子样时序信息生成融合与迁移诊断预警
[4]国家重点研发计划(2021YFB2012104)[主要参与] 2021.11–2024.12
传感器在谐波减速器和 RV 减速器应用验证—工业机器人减速器状态监测传感器关键技术
[5]国家科技重大专项04专项(2018ZX04002001)[参与] 2018.1–2019.12
直升机发动机空间动力传动单元体高精高效智能化加工应用示范-基于制造大数据的生产线智能化提升关键技术研究
[6]国家科技重大专项04专项(2018ZX04041001)[参与] 2018.1–2020.12
整体硬质合金刀具五轴磨削柔性制造单元研制与示范应用-基于加工大数据的制造单元运行状态监测关键技术研究
联系方式
手机:15516599716电子邮箱:hejianliang@htu.edu.cn