何建樑

发布时间:2024-09-03浏览次数:583

何建樑,男,19937月生,工学博士2019年毕业于3499cc拉斯维加斯计算机科学与技术专业,获理学硕士学位,导师毛文涛教授,2020-2024年,在南京理工大学机械工程学院攻读博士学位,获工学博士学位,导师王禹林教授。研究方向包括:数据驱动的机械设备运行状态监测系统构建、机械设备切削加工故障诊断、云边协同大数据驱动的深度学习状态识别方法等,包括多源数据采集程序开发,振动信号分析处理,深度学习网络建模,工业大数据存储环境实现,运行状态监测软件系统构建等。主持江苏省研究生科研与实践创新计划项目1项,参与国家自然科学基金面上项目、国家科技重大专项“04专项、国家重点研发计划高性能制造技术与重大装备重点专项等6余项,在Journal of Intelligent ManufacturingMechanical Systems and Signal ProcessingIEEE Transactions on Instrumentation and Measurement等国际学术刊物及会议发表论文5余篇。近年来担任Journal of Intelligent ManufacturingEngineering Applications of Artificial Intelligence等学术期刊论文评审。

发表论文:

[1]Jianliang He(何建樑), Yuxin Sun, Chen Yin, et al. Cross-domain adaptation network based on attention mechanism for tool wear prediction[J].Journal of Intelligent Manufacturing(中科院 1 TOP SCI, IF =8.3),2022:1-23.

[2]Jianliang He(何建樑), Yadong Xu, Yi Pan, Yulin Wang. Adaptive Weighted Generative Adversarial Network with Attention Mechanism: A Transfer Data Augmentation Method for Tool Wear Prediction[J]. Mechanical Systems and Signal Processing (Accepted) 2024 (中科院 1 SCI, IF =8.4).

[3]Jianliang He(何建樑), Chen Yin, Yan He, et al. Deep multi-task network based on sparse feature learning for tool wear prediction[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science(中科院4SCI, IF =2.0), 2022: 09544062221116224.

[4]Yuxin Sun, Jianliang He(何建樑), Haifeng Ma, et al. Online chatter detection considering beat effect based on Inception and LSTM neural networks[J]. Mechanical Systems and Signal Processing(中科院 1 SCI, IF =8.4), 2023, 184: 109723.

[5]Wentao Mao, Jianliang He(何建樑), Ming J. Zuo. Predicting remaining useful life of rolling

bearings based on deep feature representation and transfer learning[J]. IEEE Transactions on Instrumentation and Measurement(中科院 2 SCI, IF =5.6), 2019, 69(4): 1594-1608.

[6]Wentao Mao, Jianliang He(何建樑), Yuan Li, et al. Bearing fault diagnosis with auto-encoder extreme learning machine: A comparative study[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2017, 231(8): 1560-1578.(SCI , 4)

[7]Wentao Mao, Jianliang He(何建樑), Xizheng Cao, et al. Predicting Remaining Useful Life of Rolling Bearings based on Deep Feature Representation and LSTM Neural Network, Advances in Mechanical Engineering. (SCI , 3)

 

科研项目:

[1]江苏省研究生科研与实践创新计划(KYCX23_0424)[主持]   2023.4–2024.5

基于云边协同的数控机床铣削刀具寿命预测方法研究

[2]国家重点研发计划(2021YFB2012104)[主要参与]   2022.12–2025.11

高端装备协同智能故障诊断理论与预测方法—高端装备退化评估与数模联动剩余寿命预测 

[3]国家自然基金面上项目(52075267)[主要参与]   2021.1-2024.12

基于深度学习机床故障小子样时序信息生成融合与迁移诊断预警

[4]国家重点研发计划(2021YFB2012104)[主要参与]   2021.11–2024.12

传感器在谐波减速器和 RV 减速器应用验证工业机器人减速器状态监测传感器关键技术

[5]国家科技重大专项04专项(2018ZX04002001)[参与] 2018.1–2019.12

直升机发动机空间动力传动单元体高精高效智能化加工应用示范-基于制造大数据的生产线智能化提升关键技术研究

[6]国家科技重大专项04专项(2018ZX04041001)[参与] 2018.1–2020.12

整体硬质合金刀具五轴磨削柔性制造单元研制与示范应用-基于加工大数据的制造单元运行状态监测关键技术研究

 

联系方式

手机:15516599716电子邮箱:hejianliang@htu.edu.cn


返回原图
/